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Abstract— The dispersion errors associated with various
frequency-dependent FDTD methods are considered herein.
Particularly, we provide a rigorous error analysis of both
direct integration and recursive type schemes for two media
models: The one-pole Debye and the two-pole Lorentz. The
error equations are cast in terms of a dispersion relation that
shows explicitly the errors associated with numerically induced
dispersion and dissipation. From the dispersion relation, plots
are provided that typify the errors of each method. In general,
all methods have about the same propagation characteristics;
the differences, however, are seen in the attenuation plots. To
validate the claims herein, data obtained from FDTD scattering
simulations (both 1-D and 3-D geometries) are also given.

I. INTRODUCTION

VER THE PAST several years researchers have been

extending the classic finite-difference time-domain
(FDTD) method to handle frequency dependent media;
the methods bear the acronym of (FD)>TD, which is the
extended acronym for frequency dependent FDTD. These
new methods can be divided into two basic categories: The
recursive convolution (RC) methods [1]-[4] and the direct
integration (DI) methods [5]-[9]. The RC methods utilize the
property that the time-domain constitutive relation between
the displacement vector and the electric field vector is given
as a convolution integral whose time-domain susceptibility
function is known. Although the convolution operation implies
the storage of the electric field’s complete time history, a
recursive summation can be derived that requires only the
storage of a few previous values of the electric field; the actual
number of previous values is dependent upon the number of
poles in the frequency-domain susceptibility function.

In addition to Maxwell’s equations, the DI methods consider
an auxiliary set of differential equations. These equations
can be obtained either by considering the frequency-domain
constitutive polynomial as a differential equation in the time-
domain [7], [8] or by considering the governing equations on
which the constitutive relation is based [5], [6], [9].

In this paper we investigate in detail the RC methods
proposed by Luebbers er al. [1], [3] (referred to as just
Luebbers throughout the remainder of this manuscript) and the
DI methods of Young {9]. These two methods are chosen since
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they require a minimal amount of computational memory, are
postulated for any number of relaxations or resonances in the
medium and invoke the principle of explicit time integration.
In addition, we will also consider the method of Joseph ez al.
[7] (referred to as just Joseph throughout the remainder of this
manuscript), due to the popularity of the method as well as the
availability of error information [10]. (Other methods, such as
those of Kashiwa et al. [5], [6] and the method of Sullivan [4],
are not considered; the former was analyzed by Petropoulos
[10] and the latter has many of the same properties as the RC
methods of Luebbers.)

The main point of comparison is the numerical dispersion
errors introduced by each of these schemes. For this reason,
a rigorous error analysis is given with the final result cast in
terms of a dispersion relationship of the form w?e, = c%k?,
where ¢, is the relative permittivity of the medium. Due to the
simplicity of the dispersion relationship, phase and attenuation
errors can be readily deduced.

Two types of media are considered herein. The first is the
single pole model of Debye, which is mathematically defined
according the permittivity relation [11]

— oo
1 + ]wto (1)
Here €. is the permittivity at infinite frequency and ¢, is the

permittivity at DC; £, is the relaxation time. The second is the
Lorentzian two pole model; for this case

€r = €0+

(65 - eoo)w%
w? + jwr — w?’

€r = €co + 2)
In addition to e and e,,w; is the resonant frequency and v

is the damping coefficient.

II. RECURSIVE SCHEMES

The time-domain constitutive relation between the displace-
ment vector D and the electric field vector E forms the basis
of the recursive type schemes. Assuming isotropic media, we
write

¢
D(z,t) = eeo E(z, 1) + 60/ E(x,t —)x(r)dr (3)
0

where x is the electric susceptibility. Under the assumption
that I is piece-wise constant over the time interval &;, then
D at time ¢t = né, is approximated by
n—1
D(z,nb:) = exceo BT, nb:) + €, Z E(xz,(n —m)d)x™

m=0

“
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with x™ being defined as

(m~+1)6,
X" = / x(7) dr.

m&t

®

Similarly, at time ¢ = (n + 1),
D(z, (n + 1)6;) = eceoE(x, (n+ 1))

+ € Z E(z,(n—m+1)b)x™. (6
m=0
Thus, upon the invocation of the central difference approxima-
tion for the time derivative, the displacement current at time
(n + 1/2)8, is deduced from (4) and (6), and is set to equal
the curl of the magnetic field H, per Ampere’s law:

oo B (x, (n + 1)8;) — E(z,16,)] + ¢, E(z, (n + 1)6,)x°
n—1
- € Z E(z,(n — m)é)Ax™
m=0

~ 6:V x H(z,(n + 1/2)8:), Q)

where

AXm — Xm _ Xm-l—l' (8)

Further arrangement of terms leads to an explicit equation for
E

E(z,(n+1)b) = ( L

m) (EOCE(ﬁ, n6t)
n—1
+ Y E(z,(n—m)s,)Ax™

m=0

+ (6¢/€0)V x H(x,(n+1/2)8:)).  (9)

Provided that the susceptibility function can be cast in terms
of an exponential, the summation in (9) can be replaced with
a recursive or update type equation [1]-[3].

Using similar arguments as above and assuming nonmag-
netized media, we note that the discretized form for Faraday’s
law is simply

polH(z, (n +1/2)é;) — H(=, (n — 1/2)6:)]

~ —6,V X E(z,nb). (10)

Equations (9) and (10) are the temporally discretized RC field
equations for dispersive media and are valid for any causal
susceptibility function.

To consider the dispersion errors created by the afore-
mentioned discretization scheme, assume that E(z,t) =
e(k,w)exp(jwt — jk - ) and H(z,t) = h(k,w)exp(jwt —
jk - x). Then in Yee space, (9) and (10) reduce to

§Qeree(k,w) = —5K x hik,w) (11
and
JQuoh(k,w) = jK x e(k,w) (12)
where
2 . UJ(St
= — - 1
Q 5 sm( 5 ) (13)
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and

(14)

Here 0,,6, and 6. are the cell dimensions and k,k, and
k. are the components of the wavenumber k. As expected,
K —kand Q - was é,,,— 0and 6, — 0, respectively.

Also
0,gwbs /2 _ S —gwé /2
x’e e
T = o0 . 15
€& =€ 0%, (15)
which is the numerical permittivity function and
n—1
S=) eTdembiaym (16)
m=0

which is the medium’s memory function. After further vector
manipulation, the dispersion relation is deduced from (11) and
(12) and is found to be

e = 2K - K. (17)

Note: Except for the presence of ¢,, the previous numerical
dispersion relation is the numerical dispersion relation for
free-space propagation [12].

A. Debye Medium

Consider the case when the medium is ascribed by the name
of Debye. Whence [1]

R ) (18)
xX™ = (es —oeoo)(l — e_‘st/t")e_mét/t" (19)

and
AX™ = (€5 — €o0)(1 — e 0/t) 2™/ (20)

Then by inserting the previous relation into (16), we obtain
n-1
S =(es— o) (L= %/%)2 N " 2™
=0

= (€5 — €00)(1 — €7 %/t0)? (%) 1)

where

2 = e~ (6t/to)(1+iwts) (22)
By definition, steady-state is reached when n — oo. Since 2™

exponentially decays as n is increased, we conclude that

1
S = (e5 — em)(l - e"éf/tO)2 (T—-_——Z) 23)
or explicitly,
_ a8 /to2 (61 /1) (14jwt,) /2
§_ (€s —€0)(1 — e )e 24)

2 sinh[(6;/to)(1 + jwio)/2]
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Therefore, for a Debye medium and from (15) and (24), the
numerical permittivity is given by
XO ejwét /2

I8,

(fs i foo)(l - e—ét/to )Zeét/(Zto)
206, sinh[(8;/t,)(1 + jwt,)/2]

It can be argued from the numerator of (25) that this RC
scheme is only first order accurate in time, since for small
8 expljwéd, /2] ~ 1 + jwé:/2. This is to be expected since
the electric field is assumed to be piece-wise constant over
each time step in the evaluation of the convolution integral.
Also, if §; is allowed to become infinitesimally small, (25)
reduces to the exact answer given by (1).

To prove this last point, first let é;/t, become vanishingly
small. Then, recognizing that

€p = €oc +

(25)

6 .
sinh[(8;/t,)(1 + jwts)/2] = <§;—>(A+ i0,)  (26)
we can write (25) as follows:
— J‘/Jét/2 —
e 4 TR G
U 7% (A + jQ)

In the previous expressions, A = cos(wé;/2). Now if wé; — 0,
then A — 1,92 — w and (27) reduces to (1).

B. Lorentz Medium

The derivation for the two-pole Lorentz medium is similar
to the one given above. To begin with, the time-domain
susceptibility function under consideration is [3]

x(t) = ve™* sin(Bt)u(t)
where 8 = \/w? — a2, 0 = v/2 and 70 = w?(e;—€o0). When

the summation S is evaluated and n is allowed to approach
infinity, it is found that S = S; + S5, where

(28)

—Ae—2(B—wtga)bs /2

S1 = —— - 29
VT4 sin(B - w + ja)é /2] 29)
and
_ Ate—J(—B-wtia)b./2
Sp= 0’ . (30)
1j snl(—f —w + ja)8:/2]
where the asterisk denotes the complex conjugate; also
A= (__‘77 )(1 — elmatadin2, (31)
a—jB

(Note: For low loss situations, S captures the resonant effect,
for frequencies very near the resonant frequency.) The nu-
merical permittivity relation is obtained when the expression
51 + S5 is inserted into (15)

N XOerét/2 . (Sl + 52)8_]“)61/2

€r = €oo 08 (32)
t
where, for the Lorentz media
0 = Re{ a—j;ﬁ(l - e<*a+fﬂ>5t)}. (33)
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Again, the first order accuracy is manifested in (32). Even so,
as 6, becomes small, the permittivity relation converges to the
exact answer given by (2).

Now consider the case when 86; < 1 and ad; < 1. For
this situation

S ~ _le’YQéte]LU&[/?

~ . 4
(8% 4+ a2)A? + 2jaAQ — Q2 (34

Upon the insertion of (34) into (32) and the substitution of
parameters, one obtains

wie, — €0)

35
¥ AT 4 juAQ - 02 33)

€r R €
which bears some resemblance to (2).
III. DIRECT INTEGRATION SCHEMES

A. Debye Medium

For the Debye medium, the direct integration scheme given
by Young is founded on the following differential equations

(5], [91:

oF 1
o, - s 7 toojCo - P .
€o€oo T VxH 7 (€5 — €co )€ s ] (36)
MO%I; =-VxE (37)
and
aP 1
-El't— = t—[(ﬁs — €x>€oE — P] (38)

where P is the polarization vector. To accomplish the temporal
discretization, central differences are used for each of the time
derivatives; where two like quantities appear in the left and
right hand sides of the same equation, central averages are
invoked. The equations are advanced in time according to
the leap-frog strategy. That is, (37) and (38) are advanced
simultaneously and leaped with (36).

The error analysis that was presented for the RC methods is
duplicated here. Suppressing the algebraic steps, we find that
the numerical permittivity is given by the following equation:

A+5(8:/2)%(Q/t,)
A+ 5t,Q '

€ = €oo + (€5 — eoo){ 39
Obviously, as §; becomes vanishingly small. the numerical
permittivity reduces to the exact expression; the rate of con-
vergence is second order. Even so, for a non-zero time step, we
see that the effective relaxation time %/, is frequency dependent
and is given by t, = t,¥/A, where ¥ = Q/w; similarly,
the effective permittivity difference €, — ¢4, is complex and
frequency dependent. For accurate solutions, we see that it is
desirable to keep ¥/A as close to unity and (&:/2)(£2/t,)
close to zero as possible for all frequencies of interest.

In addition to Ampere’s and Faraday’s laws, Joseph [7]
considered the following time-domain constitutive relation

dE dD
to€ooto— = —€6. B+ D +1t,—.

dt dt “0
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Again, central differences and averages are used to discretize
the above equation, where appropriate, and an explicit expres-
sion for F is deduced from past values of F, and current and
past values of 1. With respect to the numerical permittivity,
Petropoulos [10] has shown that

€r = €00 + (es - Eoo)l: (41)

A
A+ jtoﬁ} '
Comparing (39) with (41), we conclude that the method of
Joseph is more accurate than the method of Young, due to
the additional term j(8;/2)%(2/t,) that shows up in (39).
However, both DI schemes will result in identical effective
relaxation times.

B. Lorentz Medium

We now turn our attention to Young’s DI scheme in associ-
ation with the Lorentz medium. To begin with, the appropriate
differential equations are presented below [6], [9]:

OE
60600'-5‘{ ZVX.H—cjp7 (42)
OoH
:U’OE =-VxE, (43)
de — 2 2
_E— = —VJP + (65 - eoo)eole - WIP, (44)
and
dpP
S 4
dt r (43)

where, in addition to the symbols defined earlier, the polariza-
tion current J, has also been introduced. Again, the temporal
discretization is accomplished by using both central difference
and average approximations, where appropriate. With respect
to the leap-frog time advancement, (42) and (45) are advanced
simultaneously and leaped with the simultaneous advancement
of (43) and (44).

Regarding the numerical permittivity, it is easy to show that

(€5 = €oo)?

— 46
w? + juQA — Q2 (46)

€r = €00 T+
Again we note that the exact expression is obtained when 6,
approaches zero. For non-zero &, it is appropriate to define
an effective, frequency-dependent resonant frequency wj and
damping frequency /. For the case at hand, it is seen that
wj = w1 /¥ and v/ = vA/VU. For Lorentz media, accurate
solutions are obtained when both ¥ and A/¥ are near unity.

A few other observations are in order. First, the DI and the
RC methods yield similar results, as manifested by (35) and
(46), when (36, and aé; tend to zero. Second, when the media
is dissipationless (i.e., v = 0), we observe that this DI scheme
is also dissipationless; this is not the case for the RC scheme
of Luebbers.

Due to the simplicity of (46), we can ascertain the stability
of Young’s scheme rather readily by considering the dispersion
relationship defined by (17) and by setting v to a value of zero.
The solution, in terms of €2, is found to be

92:/4/1—}—\/5%—&2

47
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where
242K K
oy = Gt 48)
2€50
and
2 2ﬁ' K
gy = S (49)
60'3

By definition, 2 is the eigenvalue associated with central
difference approximation of the continuous operator 9/9t.
Thus, if

e :ll'U

ot (50)

represents the system of partial differential equations to be
solved, where L is the spatial operator and v is the unknown,
then the square root of the right hand side (47) is the numerical
eigenvalue of L. Stability requires that the imaginary part
of the eigenvalue be less than 2/6; [13]. Hence, for all
propagating modes, stability is insured if

2 2
I€3+\/KZ%-—H4S (ﬁ) .

For one-dimensional propagation

&2y

2 2 2
s + 2 61: -
Ky = YL 2(;( /=) (52)

and

2, 276 2
g = C2/0) (53)

600

With respect to the method of Joseph [7], the following
time-domain constitutive relation is considered in conjunction
with the curl equations of Maxwell

d’E dF 9
emeoﬁ = —Ve€co€o T wiese s
dD d’°D

Again, the discretization is accomplished by using central
differences and averages. From this, it can be shown that [10]

(€5 = €0o)w? cos(wéy)

. 55
w? cos(wdy) + jyQA — Q2 (5)

€r = €00 T

Upon the comparison of (46) with (55), it is seen that
Young’s and Joseph’s method yield nearly identical results.
Note: The effective resonant frequencies are different whereas
the damping frequencies are the same. In the case of Joseph's
method, W} = wyy/cos(wd;)/ V. Finally, for lossless media,
the scheme of Joseph is also dissipationless. (For a stability
analysis, see [10].)



1906

IV. FDTD PARAMETERS

Now that each of the schemes have been analytically
characterized, it is important to state the general procedure
for setting the parameters ¢; and ¢, .. First, the spatial step
is selected according to the rule that the propagating wave be
sampled N times per wavelength, A,. For example,

Ao Vo

:N:Nfo

where v, is the corresponding phase velocity at the frequency
fo (€., vo = v|j=y,). The time step is then deduced from
a stability formula, such as (51) or those given in [10]. (In
the absence of a media dependent criterion, one can try the
relation 8; = 6, /(20max ), Where vmax is the maximum phase
velocity.)

Once §; and 6, are specified, (17) is used to deduce the
numerical wave number. For example, in a one-dimensional
space, k (as a function of w, §; and §,) is easily determined
from (17)

(2 gt [P (5
lu—((sm)Sln [6tc sin 3 .

Dispersion and attenuation surfaces can now be plotted using
(57) and compared with that obtained from the exact answer:
k2 = ¢w? If the comparison is not favorable, then the
parameter /N should be adjusted until the error (i.e., the
difference of the two surfaces) is an acceptable value at f,. The
total error accumulation is computed by multiplying the error
by the total distance the wave will travel during an elapsed
time of M6, [14], where A is the number of time steps.

bz

(56)

(57

V. NUMERICAL RESULTS

To bring to light the various dispersion errors introduced
by the aforementioned schemes, it is advantageous to consider
and plot the following relative error functions

_ pfdtd}
real — Re{k k (58)
Re{k}
and
. I k— kfdtd
Im{k}
where k4t is a solution of (57) and k is a solution of

w?e, = c2k2. Under the assumption that the waves are of the

form exp[—jkz + jwt], it is apparent that e™®! is a measure
of the numerical phase error and e™?% is a measure of the
numerical attenuation error.

First consider the Debye model for water, which is charac-
terized by the following parameters: ¢; = 81,¢,, = 1.8 and
to, = 9.4 ps: for the FDTD parameters, let h, = 37.5 um and
6 = 62.5 fs [1]. Figs. 1 and 2 show the logarithm of the error
metrics, as defined by (58) and (59), respectively. With respect
to the phase errors, it is apparent from Fig. 1 that for a given
allowance of phase error, the DI schemes have more bandwidth
than the RC scheme. Also of interest are the flat dissipation
errors for the RC scheme and the DI scheme of Young, as seen
from Fig. 2. Although the dissipation errors are higher at lower
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Fig. 2. The logarithm of the attenuation error as a function of frequency:
Debye media.

frequencies, we see that the RC scheme can possibly achieve
more bandwidth, from a dissipation type criteria. Finally, in
the high frequency limit, observe from Figs. 1 and 2 that all
three schemes converge to about the same error values.

Using these same parameters, we now consider a one-
dimensional FDTD simulation of a plane wave scattering from
a Debye slab; the chosen field components are £, and H,.
The computational domain consists of a 1500 cells, 375 of
which span the slab. Assuming an incident Gaussian pulsed
plane wave of the form exp({t — (x — x,)/c)*w?), where
w = 1.64 x 10! s71 and x, = 450 6,,, and allowing the clock
to run for 1500 time steps, we obtained the results plotted in
Fig. 3 for all three methods. (Note that this choice of w realizes
an input pulse that has a usable frequency spectrum of about
80 GHz.) Since the relative differences of each method are not
visible from Fig. 3, we also provide Table I, which tabulates
the maximum and minimum values of the electric field as
computed from the FDTD simulations and from the exact
Fourier integral; the number in parenthesis is the relative error.
(See Appendix A for more information on how the exact value
is obtained.) As expected from the error plots of Figs. 1 and
2, Table I confirms that the overall accuracy of each method
is excellent.

For the Lorentz media, let ¢, = 3,€0c = 1.5,w; =
27 x 50 x 10° /s, and v = 2w, 6, = 37.5 pum and 6, = 62.5
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TABLE 1
Tue CoMpuTED ELECTRIC FIELD VALUES (V/m) FOR THE METHODS OF YOUNG, JOSEPH
AND LUEBBERS: DEBYE SLAB THE RELATIVE ERROR IS PROVIDED IN PARENTHESIS

CELL # YOUNG JOSEPH LUEBBERS EXACT
304 -7578 -.7578 -.7575 -7586
(.11%) ( 11%) (.15%)

808 03798 03798 03806 03804
(.16%) ( 16%) (- 05%)

TABLE II

THE CoMPUTED ELECTRIC FIELD VALUES (V/m) FOR THE METHODS OF YOUNG, JOSEPH

AND LUEBBERS: LORENTZ SLAB

THE RELATIVE ERROR IS PROVIDED IN PARENTHESIS

1907

CELL # YOUNG JOSEPH LUEBBERS EXACT
317 .3184 .3183 .3183 ~3184
(0.00%) (0.03%) (0.03%)
402 1098 .1098 .1089 1096
(-.18%) (-.18%) (.64%)
468 -07333 -.07336 -07243 -07323
(-.14%) (-.18%) (1.09%)
534 04387 04392 04312 04383
(-.09%) (-.21%) (1.62%)
600 -02303 -.02308 -.02252 -.02303
(0.00%) (-.22%) (2.21%)
667 009746 009766 009491 009759
(13%) (-.07%) (2.75%)
734 -.002265 -.002274 -.002208 -.002283
(.79%) (.39%) (3.29%)
772 01083 .01088 .01056 01082
(-0.09%) (-.55%) (2.40%)
802 -01147 -01142 -01229 -01155
(.69%) (1.13%) (6.41%)
842 04121 04138 04152 04100
(-.51%) (-.93%) (-1.27%)
895 -.1030 -.1029 -.1035 -.1031
(.10%) (.19%) (-.39%)
985 3709 3709 3728 3708
(-.03%) (-.03%) (-.54%)
02 time of 1500 &;; we also assumed that w = 1.64 x 1011 g—1
« All Methods and z, = 450 6,.) However, after closer examination of data,
oo Bxact s it was found that the data associated with the RC scheme was
. not as accurate as the data associated with the two DI schemes.
Particularly, we learn from Table II that the RC scheme has
- 02 relative errors up to 6.41%, whereas the two RC schemes have
= relative errors no higher than 1.13%. It is surmized that the
Y oa higher errors in the RC scheme are due to the high dissipation
errors that are predicted by Fig. 5.

06 Finally, to conclude this section, consider the case of a
plane wave scattered by a sphere comprised of a Lorentzian
dielectric, whose dielectric parameters are the same as the

%0 00 10000 15000 aforementioned slab. The computational domain is a 50 cell

el umber

Fig. 3. Time-domain scattering and transmission: Debye slab.

fs [3]. Figs. 4 and 5 show the relative phase and attenuation
errors, respectively. Again, the phase errors associated with
each method are about the same. This is not the case with
respect to the attenuation errors, where we observe that the
RC scheme has about a flat five percent relative error. Even
with high attenuation errors, the RC scheme gave satisfactory
results in a one-dimensional FDTD simulation, as shown in
Fig. 6. (In addition to the parameters listed above, we chose
again a computational domain of 1500 cells and a running

cube and the diameter of the sphere is 20 cells. As far as the
FDTD parameters are concerned, let 6, = 37.5 um and 6, =
62.5 fs, as before. Instead of time domain data, Figs. 7 and
8 show the frequency domain data for the impulse response
of |ex(w,x)|, as measured parallel to the z-axis and through
the center of the sphere. Particularly, Fig. 7 is associated with
the spectral frequences of 25 GHz, 50 GHz, and 100 GHz;
whereas, Fig. 8 is for the spectral components at 200 and 400
GHz. (Note: In both figures only the data from one of the
FDTD methods is shown due to the very close agreement
between the data derived from each of the methods.) As seen
from Figs. 7 and 8, the agreement between the FDTD results



1908

20

00

20}

40k

LOG(e™)

60 |

—— Joseph
-=--- Luebber

80T —-— Young

3

10" 10
w (xrfs)
Fig. 4.
media.

The logarithm of the phase error as a function of frequency: Lorentz

100 .

80

60

40 b

20

00

LOG(e™®)

20 |

40 |

Joseph
~==- Luebber
—-— Young

10" 10
@ (r/s)

Fig. 5. The logarithm of the attenuation error as a function of frequency:
Lorentz media.

04

» Al Methods
Exact

02}

00 ¢

E, (V/im)

o2 | SLAB

04
00 500 0

10000
Cell Number

1500 0

Fig. 6. Time-domain scattering and transmission. Lorentzian slab.

and the results obtained from the closed-form Mie solution
[15] is fairly good. When the frequency was increased to 600
GHz, we observed no correlation between computed and exact.
However, it was observed that the relative errors between all
three FDTD methods were only about 1%. Even though the
dispersion curves of Figs. 4 and 5 predict relatively low errors
even at 600 GHz, we surmise that the disagreement is due
more to boundary condition errors [16] rather than phase and
attenuation related errors.
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Fig. 7. Frequency-domain scattering from a Lorentzian sphere: f = 25, 50
and 100 GHz.
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Fig. 8. Frequency-domain scattering from a Lorentzian sphere: f = 200
and 400 GHz.

VI. CONCLUSION

In this paper, three (FD)QTD type algorithms have been
considered and studied in detail. After exhaustive simulations,
we found that all three algorithms gave reasonably good results
for typical choices of parameters, relaxations and resonances.
Moreover, all schemes have about the same CPU burden (i.e.,
number of multiplications, additions, etc.), have the necessary
simplicity (from a coding perspective) and introduce a certain
amount of non-physical dispersion and/or dissipation into
the numerical solution. When applied to three-dimensional
problems, it was consistently observed that all three methods
succeeded or failed in capturing the physical phenomena. More
importantly, we surmise that other error sources, such as those
associated with the stair-step modeling of a curve surface or
an inhomogeneous medium, dominate errors due to artificial
dispersion or dissipation. However, each algorithm does have
its own peculiarities, deficiencies and strengths, as detailed
next.

Except for a few cases, we were always able to get good
results from the method of Joseph. This is to be expected
since the truncation errors are all second order. For the cases
when the method did give poor results (usually a result of
setting the FDTD discretization parameters too coarse) it was
found that the other two methods failed in the exact same way.
Unfortunately, this method is memory expensive and is not
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easily extended to account for media with multiple relaxations
Of resonarnces.

With respect to the method of Luebbers, the memory
requirements are minimal (i.e., one additional memory cell
per pole in the permittivity relation) and the adaptability of the
algorithm to account for multiple relaxations or resonances is
straight forward. The major shortcoming, however, is the first
order nature of the convolution approximation. As the dis-
persion curves suggest, the phase characteristics are adequate
but the attenuation characteristics can be poor. For late time
investigations, the accumulation of attenuation errors may be
too great for the RC simulation to yield accurate data.

Finally, Young’s method is also second order accurate,
memory parsimonious and flexible. For Debye media, the
attenuation errors are typically poorer than those associated
with the method of Joseph but usually better than those
associated with the method of Luebbers. Also, for Lorentzian
media, we found another deficiency: If the incident wave has
all of its primary frequency content well below the resonant
frequency (i.c., €, = €) then the stability criterion requires too
small of a time step for the algorithm to be of any practical
value. Other than this case, the data derived from both DI
simulations were virtually identical.

In conclusion, we feel that no one method can be labeled
superior over the others. By carefully selecting the FDTD pa-
rameters, we were able to get superior or inferior results from
all three methods. However, by using the error information
provided herein, one can obtain readily dispersion curves that
detail dispersion error information for the application at hand.
From this, the time step and cell size can be chosen so that the
user can apply each one of these algorithms with confidence.

APPENDIX A

The computed “exact” answer is obtained by numerically
integrating the integral
e(z,t) = / A(W)E(z,w)e’™? dw (60)

—o00

where E(z,w) is the exact frequency domain solution [17]
and A(w) is the Fourier transform of the input pulse. Since the
integrand decays like e=«"/(4w%) gang e(z,t) is a real function,
the above integral is well approximated by

e(z,t) = 2Re{ /0 ’ A(w)E(z,w)e?*? dw} (61)

where a is chosen such that e=*"/(4v*) = 10~16_ Four point
Gaussian quadrature is then applied over a span of Aw, which
is determined initially from the zeros of the integrand, and
the results of each sub-integration are summed to form the
answer. To check accuracy, the integration span is halved and
the integration is repeated; the new answer is compared with
the old one. This process is repeated until the required accuracy
is achieved. Certainly, more efficient procedures are available
to accomplish the numerical integration (e.g. FFT) However,
our ultimate concern for this investigation is accuracy, which
is guaranteed by using this methodology.
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